
A simple way to implement Attractor clouds of particles into the
world award winning 3D package

Attractors & Lightwave3D

Aurora’s Tim Dunn
 plugin

(c) LAV at www.dartrender.too.it

Attractors are maths objects. In effect, you can’t see them. In the real world, I mean.
Nevertheless they are recognized as ‘engines’ leading on several real world things.
Basically an attractor is a formula and a recursive algorithm that generates, for each recursion, a
point in an X,Y,Z cohordinate of the 3d space. But I’m not an expert, so let me dig in the net.

In dynamical systems, an attractor is a set to which the system evolves after a long enough time.
For the set to be an attractor, trajectories that get close enough to the attractor must remain close
even if slightly disturbed. Geometrically, an attractor can be a point, a curve, a manifold, or even
a complicated set with fractal structures known as a strange attractor. Describing the attractors
of chaotic dynamical systems has been one of the achievements of chaos theory. (Wikipedia,
attractor)
One of the most simplest attractor is known as Lorentz .

The lorenz attractor was first studied by Ed N.
Lorenz, a meterologist, around 1963. It was deri-
ved from a simplified model of convection in the
earths atmosphere. It also arises naturally in mo-
dels of lasers and dynamos. The system is most
commonly expressed as 3 coupled non-linear dif-
ferential equations.

dx / dt = a (y - x)

dy / dt = x (b - z) - y

dz / dt = xy - c z

The series does not form limit cycles nor does it
ever reach a steady state. Instead it is an exam-
ple of deterministic chaos. As with other chaotic
systems the Lorenz system is sensitive to the ini-
tial conditions, two initial states no matter how clo-
se will diverge, usually sooner rather than later.
(http://local.wasp.uwa.edu.au/~pbourke/fractals/
lorenz/ where left image is hosted).

Attractors by a simple math point of view

The so called rossler system is credited to Otto Rossler and arose from work in chemical kinetics.
The system is described with 3 coupled non-linear differential equations
dx / dt = - y - z
dy / dt = x + a y
dz / dt = b + z (x - c)
where a = 0.2, b = 0.2, c = 5.7

The series does not form limit cycles nor does it ever reach a steady state. Instead it is an exam-
ple of deterministic chaos. As with other chaotic systems the Rossler system is sensitive to the ini-
tial conditions, two initial states no matter how close will diverge, usually sooner rather than later.

While the equations look simple enough
they lead to wonderful trajectories, some
examples of which are illustrated in this
page

The following is a short piece of simple C
code to illustrate how one might create the
attractors shown here.

 double h = 0.05; /* or smaller */
 double a = 0.2;
 double b = 0.2;
 double c = 5.7;
 XYZ p,plast = {0.1,0,0};

 for (i=0;i<1000000;i++) {
 p.x = plast.x + h * (- plast.y - plast.z);
 p.y = plast.y + h * (plast.x + a * plast.y);
 p.z = plast.z + h * (b + plast.z * (plast.x
- c));
 if (i > 100)
 Draw the point p
 plast = p
 }

(http://local.wasp.uwa.edu.au/~pbourke/
fractals/rossler/ + right upper image)

If you give a sight at the code above, you
can imagine that each point has an extra
value, other then x,y,z. The i(ndex) of the
loop could be the time you can draw the
color of point with.

This is a brief and small introduction to the
attractor world: by our point of view we just
need to know that this kind of objects can
easily obtained by the machine we use to
make 3d. Lightwave has an integrated sy-
stem that let us write these small pieces of
code to make attractors interact with other
Lightwave instruments, such as points,
polygons, particles and colors.

The target of this tutorial is to show how
we can use Aurora - Tim Dunn code to do
this extra exploration in mathematical and
abstract spaces.

(on the right: lorenz and hopalong at-
tractors)

Now let’s go to Lightwave and attractors.

First of all you have to download Aurora’s attractors plugin from Tim site www.auroragrafx.com (in
that page you can find a global explanation of the plugin itself).
.
Then you need to load it into Lightwave. You know: you put the *.p file into your plugs directory, laun-
ch Layout, use ALT+F10 key combination, load plugin, browse to directory and load it.

Now you have the code into object properties -> custom object panel. Actually the plugin acts only
as a sort of modifier when connected to an object. You can use a NULL object in order to let the
attractor appears.

Simple project

fig:1 - Add null

Fig. 2: ‘p’ to object properties > You add Aurora Attractor in Geometry> Custom object; immedia-
tely you have the default attractor drawn on the quad view.

Double clicking on the name of the plugin causes the opening of a panel that’s the core of the
problem.
For now we are not worryed about the subpanels (Boundary, start, Files, Projection and Symme-
try). Let’s play with the main options and see what happens.

Here you can choose
your attractor: lorenz,
lorenz 84, rossler, ecc
as you can see below

Here you can modify
the values of the va-
riables involved in at-
tractor formula

Here you can do an au-
tomatic search for the
variables values

Drawing settings to
change the appa-
rence in layout

Now the best is adding another null object to use as target for our camera. Aiming camera is a critical
step in rendering attractors.

Then:
1) add null and name it such as ‘target’
2) select camera,
3) press ‘m’ to open motion panel,
4) select ‘target’ as Parent item and Target item.

Now we have camera locked to the new null. You can move null and camera itself will move to follow
the null. But you can move camera indipendentely to tune other settingd, i.e. the point of view.

Ok. Now we have a simple but complete scene with NO polygon! The setting for a tipical attractor
scene is the simplest you can set in Lightwave: a pair of nulls, a camera, a normal set of lights and...
stop!

Now the things become more familiar for a normal Lightwave user: we have a cloud of particles as
we obtained them transforming a null in an emitter. We have just to set the particles visibility adding
the Hyperwoxels modifier. We transform aset of attractor points into a volumetric object.

So open Hyperwoxels panel (if you didn’t change the default setting, you can find it in ‘window’ sub-
menu) and check your attractor null. Check ‘Show particles’ too and, hoplà, you have this screen.

Now we are surely anxious to give colors and shapes to our particles. So we need to work with all
the options of the Hypervoxels panels.
Let me be your guide in this exercise:
1) set ‘Object Type’ as Sprite. The Sprite mode is fast and fit with attractors
2) open Viper and let it enjoy you with its almost immediate feedback
3) Change the value of Particle size. This value determines what is the ‘starting’ size of particle.
you can change and shape the particle
4) Changing the stretch value - With Direction = none, stretch is deactivated.

As you know the stretching valie is used to ... stretch particles along X,Y,Z or Velocity. In normal par-
ticle generated by a normal emitter, this value corresponds to the normal movements in the space/
time. In the attractor you are working with, Velocity is a strange and exoteric value that rapresents...
hmmm... let Aurora speaks:”For shading your particles I would recommend starting with simple spri-
tes. Due to the funky mathematical nature of strange attractors you can calculate the velocity, as it
were, as the numerical solutions fly around the basins of attraction. I have done this in the plugin and
provided you access to this information by setting a color gradient and setting the input parameter to
‘Particle Speed’. Currently the velocity is non-normalized for the various attractors. What this means
to you is you’ll want to play with adjusting the ‘End’ value of the gradient and scaling your gradient
till you get the desired result.” (www.auroragrafx.com)

Click on T(exture) of Particle size and set the layer as a gradient. Let the gradient refer to Particle
Speed or to Distance by Object (you can the choose the object as null-attractor itself or null-target,
or whatever you want). I don’t know exactly what Particle speed means, but I found it very useful.
Playing with these values, with ‘show particles’, checked you can have an immediate feedback
into OpenGL quad views.

When you are fit with the particles size, go on and work with ‘Stretch’ values. You can set Stretch
direction to Particle Speed, the stretch value as you like (up to 300-500%) and then open the
Texture panel (Stretch amount-> T button). To go on with this simple exercise, we can just copy the
Particle Size->Texture layer (the above gradient) and paste into Stretch amount layer panel. You
can change the layer input as you want. I usually work on Particle Speed.

This is what you can see in Viper window

You select the main Shading panel in HW window and set the main color. Then you click on the
ususal T button and set the layer as Gradient. As usual: chosse Gradient, Particle Speed, and set
the colors steps as you like.

The colors you added to attractor cloud let you have an immediate (Viper) feedback of the chan-
ging object.

For now I stop here. In the next tutorial, I hope write it in a short time, you can find a lot of exerci-
ses: turning particles in surfaces, texturing surfaces, mixing real objects with attractors and other

